Conceptual Chemistry————

Chapter 3: Elements of Chemistry

Polyatomic Ions

Sometimes a molecule can lose or gain a proton (hydrogen ion) to form what we call a polyatomic ion:

Phosphoric acid (molecule)

Phosphate ion (polyatomic ion)

Ammonia (molecule)

Ammonium ion (polyatomic ion)

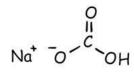
Table of common polyatomic ions

NAME	FORMULA
Ammonium ion	NH ₄ ⁺
Bicarbonate ion	HCO ₃
Carbonate ion	CO ₃ ²⁻
Cyanide ion	CN-

NAME	FORMULA
Hydroxide ion	OH-
Nitrate ion	NO ₃
Phosphate ion	PO ₄ ³⁻
Sulfate ion	SO ₄ ²⁻

When it comes to naming compounds, a polyatomic ion is treated as a single unit. Positively charged ions are listed first followed by the negatively charged ions, but we don't include the word "ion". For example, below is the formula for ammonium phosphate. Notice how we need three (1+) ammoniums to balance a single (3-) phosphate.

Use the table of common polyatomic ions to deduce the formula for the following compounds:


Sodium hydroxide NaOH Aluminum hydroxide Al (OH)₃

Hydrogen hydroxide HOH Aluminum sulfate Ala(SO4)3

Ammonium sulfate (NH₄)₂ SO₄ Potassium cyanide KCN

Sodium sulfate $N_{a_1}SO_4$ Calcium phosphate $C_{a_3}(PO_4)_2$

water! Name the following structures and write their formula based upon the polyatomic ions they contain:

Name: Sodium bicarbonate

Formula: NaHCO3

Name: Potassium nitrate

Formula: KNO3

$$N \equiv C^- Ca^{2+} C \equiv N$$

Name: <u>Calcium cyanide</u>

Formula: (a((N)2

Formula: CaCO3